Ubuntu 5929-1: Linux kernel (Raspberry Pi) vulnerabilities | LinuxS...
==========================================================================
Ubuntu Security Notice USN-5929-1
March 07, 2023

linux-raspi vulnerabilities
==========================================================================

A security issue affects these releases of Ubuntu and its derivatives:

- Ubuntu 22.10

Summary:

Several security issues were fixed in the Linux kernel.

Software Description:
- linux-raspi: Linux kernel for Raspberry Pi systems

Details:

It was discovered that the Upper Level Protocol (ULP) subsystem in the
Linux kernel did not properly handle sockets entering the LISTEN state in
certain protocols, leading to a use-after-free vulnerability. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2023-0461)

Davide Ornaghi discovered that the netfilter subsystem in the Linux kernel
did not properly handle VLAN headers in some situations. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2023-0179)

It was discovered that the NVMe driver in the Linux kernel did not properly
handle reset events in some situations. A local attacker could use this to
cause a denial of service (system crash). (CVE-2022-3169)

Maxim Levitsky discovered that the KVM nested virtualization (SVM)
implementation for AMD processors in the Linux kernel did not properly
handle nested shutdown execution. An attacker in a guest vm could use this
to cause a denial of service (host kernel crash) (CVE-2022-3344)

Gwangun Jung discovered a race condition in the IPv4 implementation in the
Linux kernel when deleting multipath routes, resulting in an out-of-bounds
read. An attacker could use this to cause a denial of service (system
crash) or possibly expose sensitive information (kernel memory).
(CVE-2022-3435)

It was discovered that a race condition existed in the Kernel Connection
Multiplexor (KCM) socket implementation in the Linux kernel when releasing
sockets in certain situations. A local attacker could use this to cause a
denial of service (system crash). (CVE-2022-3521)

It was discovered that the Netronome Ethernet driver in the Linux kernel
contained a use-after-free vulnerability. A local attacker could use this
to cause a denial of service (system crash) or possibly execute arbitrary
code. (CVE-2022-3545)

It was discovered that the Intel i915 graphics driver in the Linux kernel
did not perform a GPU TLB flush in some situations. A local attacker could
use this to cause a denial of service or possibly execute arbitrary code.
(CVE-2022-4139)

It was discovered that the NFSD implementation in the Linux kernel
contained a use-after-free vulnerability. A remote attacker could possibly
use this to cause a denial of service (system crash) or execute arbitrary
code. (CVE-2022-4379)

It was discovered that a race condition existed in the x86 KVM subsystem
implementation in the Linux kernel when nested virtualization and the TDP
MMU are enabled. An attacker in a guest vm could use this to cause a denial
of service (host OS crash). (CVE-2022-45869)

It was discovered that the Atmel WILC1000 driver in the Linux kernel did
not properly validate the number of channels, leading to an out-of-bounds
write vulnerability. An attacker could use this to cause a denial of
service (system crash) or possibly execute arbitrary code. (CVE-2022-47518)

It was discovered that the Atmel WILC1000 driver in the Linux kernel did
not properly validate specific attributes, leading to an out-of-bounds
write vulnerability. An attacker could use this to cause a denial of
service (system crash) or possibly execute arbitrary code. (CVE-2022-47519)

It was discovered that the Atmel WILC1000 driver in the Linux kernel did
not properly validate offsets, leading to an out-of-bounds read
vulnerability. An attacker could use this to cause a denial of service
(system crash). (CVE-2022-47520)

It was discovered that the Atmel WILC1000 driver in the Linux kernel did
not properly validate specific attributes, leading to a heap-based buffer
overflow. An attacker could use this to cause a denial of service (system
crash) or possibly execute arbitrary code. (CVE-2022-47521)

Update instructions:

The problem can be corrected by updating your system to the following
package versions:

Ubuntu 22.10:
   linux-image-5.19.0-1014-raspi   5.19.0-1014.21
   linux-image-5.19.0-1014-raspi-nolpae  5.19.0-1014.21
   linux-image-raspi               5.19.0.1014.13
   linux-image-raspi-nolpae        5.19.0.1014.13

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References:
   https://ubuntu.com/security/notices/USN-5929-1
   CVE-2022-3169, CVE-2022-3344, CVE-2022-3435, CVE-2022-3521,
   CVE-2022-3545, CVE-2022-4139, CVE-2022-4379, CVE-2022-45869,
   CVE-2022-47518, CVE-2022-47519, CVE-2022-47520, CVE-2022-47521,
   CVE-2023-0179, CVE-2023-0461

Package Information:
   https://launchpad.net/ubuntu/+source/linux-raspi/5.19.0-1014.21

Ubuntu 5929-1: Linux kernel (Raspberry Pi) vulnerabilities

March 7, 2023
Several security issues were fixed in the Linux kernel.

Summary

A security issue affects these releases of Ubuntu and its derivatives: - Ubuntu 22.10 Summary: Several security issues were fixed in the Linux kernel. Software Description: - linux-raspi: Linux kernel for Raspberry Pi systems Details: It was discovered that the Upper Level Protocol (ULP) subsystem in the Linux kernel did not properly handle sockets entering the LISTEN state in certain protocols, leading to a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-0461) Davide Ornaghi discovered that the netfilter subsystem in the Linux kernel did not properly handle VLAN headers in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-0179) It was discovered that the NVMe driver in the Linux kernel did not properly handle reset events in some situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2022-3169) Maxim Levitsky discovered that the KVM nested virtualization (SVM) implementation for AMD processors in the Linux kernel did not properly handle nested shutdown execution. An attacker in a guest vm could use this to cause a denial of service (host kernel crash) (CVE-2022-3344) Gwangun Jung discovered a race condition in the IPv4 implementation in the Linux kernel when deleting multipath routes, resulting in an out-of-bounds read. An attacker could use this to cause a denial of service (system crash) or possibly expose sensitive information (kernel memory). (CVE-2022-3435) It was discovered that a race condition existed in the Kernel Connection Multiplexor (KCM) socket implementation in the Linux kernel when releasing sockets in certain situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2022-3521) It was discovered that the Netronome Ethernet driver in the Linux kernel contained a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2022-3545) It was discovered that the Intel i915 graphics driver in the Linux kernel did not perform a GPU TLB flush in some situations. A local attacker could use this to cause a denial of service or possibly execute arbitrary code. (CVE-2022-4139) It was discovered that the NFSD implementation in the Linux kernel contained a use-after-free vulnerability. A remote attacker could possibly use this to cause a denial of service (system crash) or execute arbitrary code. (CVE-2022-4379) It was discovered that a race condition existed in the x86 KVM subsystem implementation in the Linux kernel when nested virtualization and the TDP MMU are enabled. An attacker in a guest vm could use this to cause a denial of service (host OS crash). (CVE-2022-45869) It was discovered that the Atmel WILC1000 driver in the Linux kernel did not properly validate the number of channels, leading to an out-of-bounds write vulnerability. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2022-47518) It was discovered that the Atmel WILC1000 driver in the Linux kernel did not properly validate specific attributes, leading to an out-of-bounds write vulnerability. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2022-47519) It was discovered that the Atmel WILC1000 driver in the Linux kernel did not properly validate offsets, leading to an out-of-bounds read vulnerability. An attacker could use this to cause a denial of service (system crash). (CVE-2022-47520) It was discovered that the Atmel WILC1000 driver in the Linux kernel did not properly validate specific attributes, leading to a heap-based buffer overflow. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2022-47521)

Update Instructions

The problem can be corrected by updating your system to the following package versions: Ubuntu 22.10: linux-image-5.19.0-1014-raspi 5.19.0-1014.21 linux-image-5.19.0-1014-raspi-nolpae 5.19.0-1014.21 linux-image-raspi 5.19.0.1014.13 linux-image-raspi-nolpae 5.19.0.1014.13 After a standard system update you need to reboot your computer to make all the necessary changes. ATTENTION: Due to an unavoidable ABI change the kernel updates have been given a new version number, which requires you to recompile and reinstall all third party kernel modules you might have installed. Unless you manually uninstalled the standard kernel metapackages (e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual, linux-powerpc), a standard system upgrade will automatically perform this as well.

References

https://ubuntu.com/security/notices/USN-5929-1

CVE-2022-3169, CVE-2022-3344, CVE-2022-3435, CVE-2022-3521,

CVE-2022-3545, CVE-2022-4139, CVE-2022-4379, CVE-2022-45869,

CVE-2022-47518, CVE-2022-47519, CVE-2022-47520, CVE-2022-47521,

CVE-2023-0179, CVE-2023-0461

Severity
Ubuntu Security Notice USN-5929-1

Package Information

https://launchpad.net/ubuntu/+source/linux-raspi/5.19.0-1014.21

We use cookies to provide and improve our services. By using our site, you consent to our Cookie Policy.