Ubuntu 6520-1: Linux kernel (StarFive) vulnerabilities
Summary
A security issue affects these releases of Ubuntu and its derivatives: - Ubuntu 22.04 LTS Summary: Several security issues were fixed in the Linux kernel. Software Description: - linux-starfive-6.2: Linux kernel for StarFive processors Details: Ivan D Barrera, Christopher Bednarz, Mustafa Ismail, and Shiraz Saleem discovered that the InfiniBand RDMA driver in the Linux kernel did not properly check for zero-length STAG or MR registration. A remote attacker could possibly use this to execute arbitrary code. (CVE-2023-25775) Yu Hao and Weiteng Chen discovered that the Bluetooth HCI UART driver in the Linux kernel contained a race condition, leading to a null pointer dereference vulnerability. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-31083) Yu Hao discovered that the UBI driver in the Linux kernel did not properly check for MTD with zero erasesize during device attachment. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2023-31085) Lin Ma discovered that the Netlink Transformation (XFRM) subsystem in the Linux kernel contained a null pointer dereference vulnerability in some situations. A local privileged attacker could use this to cause a denial of service (system crash). (CVE-2023-3772) Chih-Yen Chang discovered that the KSMBD implementation in the Linux kernel did not properly validate SMB request protocol IDs, leading to a out-of- bounds read vulnerability. A remote attacker could possibly use this to cause a denial of service (system crash). (CVE-2023-38430) Chih-Yen Chang discovered that the KSMBD implementation in the Linux kernel did not properly validate command payload size, leading to a out-of-bounds read vulnerability. A remote attacker could possibly use this to cause a denial of service (system crash). (CVE-2023-38432) It was discovered that the NFC implementation in the Linux kernel contained a use-after-free vulnerability when performing peer-to-peer communication in certain conditions. A privileged attacker could use this to cause a denial of service (system crash) or possibly expose sensitive information (kernel memory). (CVE-2023-3863) Laurence Wit discovered that the KSMBD implementation in the Linux kernel did not properly validate a buffer size in certain situations, leading to an out-of-bounds read vulnerability. A remote attacker could use this to cause a denial of service (system crash) or possibly expose sensitive information. (CVE-2023-3865) Laurence Wit discovered that the KSMBD implementation in the Linux kernel contained a null pointer dereference vulnerability when handling handling chained requests. A remote attacker could use this to cause a denial of service (system crash). (CVE-2023-3866) It was discovered that the KSMBD implementation in the Linux kernel did not properly handle session setup requests, leading to an out-of-bounds read vulnerability. A remote attacker could use this to expose sensitive information. (CVE-2023-3867) It was discovered that the Siano USB MDTV receiver device driver in the Linux kernel did not properly handle device initialization failures in certain situations, leading to a use-after-free vulnerability. A physically proximate attacker could use this cause a denial of service (system crash). (CVE-2023-4132) It was discovered that a race condition existed in the Cypress touchscreen driver in the Linux kernel during device removal, leading to a use-after- free vulnerability. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-4134) Thelford Williams discovered that the Ceph file system messenger protocol implementation in the Linux kernel did not properly validate frame segment length in certain situation, leading to a buffer overflow vulnerability. A remote attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-44466) Manfred Rudigier discovered that the Intel(R) PCI-Express Gigabit (igb) Ethernet driver in the Linux kernel did not properly validate received frames that are larger than the set MTU size, leading to a buffer overflow vulnerability. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-45871) Maxim Levitsky discovered that the KVM nested virtualization (SVM) implementation for AMD processors in the Linux kernel did not properly handle x2AVIC MSRs. An attacker in a guest VM could use this to cause a denial of service (host kernel crash). (CVE-2023-5090) It was discovered that the SMB network file sharing protocol implementation in the Linux kernel did not properly handle certain error conditions, leading to a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-5345)
Update Instructions
The problem can be corrected by updating your system to the following package versions: Ubuntu 22.04 LTS: linux-image-6.2.0-1009-starfive 6.2.0-1009.10~22.04.1 linux-image-starfive 6.2.0.1009.10~22.04.2 After a standard system update you need to reboot your computer to make all the necessary changes. ATTENTION: Due to an unavoidable ABI change the kernel updates have been given a new version number, which requires you to recompile and reinstall all third party kernel modules you might have installed. Unless you manually uninstalled the standard kernel metapackages (e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual, linux-powerpc), a standard system upgrade will automatically perform this as well.
References
https://ubuntu.com/security/notices/USN-6520-1
CVE-2023-25775, CVE-2023-31083, CVE-2023-31085, CVE-2023-3772,
CVE-2023-38430, CVE-2023-38432, CVE-2023-3863, CVE-2023-3865,
CVE-2023-3866, CVE-2023-3867, CVE-2023-4132, CVE-2023-4134,
CVE-2023-44466, CVE-2023-45871, CVE-2023-5090, CVE-2023-5345
Package Information
https://launchpad.net/ubuntu/+source/linux-starfive-6.2/6.2.0-1009.10~22.04.1